Partitions and P-like ideals

Adam Marton Jaroslav Šupina

Given two ideals \mathcal{I}, \mathcal{J} on the same set M we say that \mathcal{I} is a $P(\mathcal{J})$ -ideal if for any countable family $\{I_n : n \in \omega\} \subseteq \mathcal{I}$ there is $I \in \mathcal{I}$ such that $I_n \subseteq^{\mathcal{J}} I$ for each $n \in \omega$. The property was introduced by M. Mačaj and M. Sleziak [2], and further investigated by R. Filipów and M. Staniszewski [1] as a part of their research on various types of ideal-based convergence in topological spaces.

We consider some important ideals induced by disjoint families, namely Fin, Fin $\times \emptyset, \emptyset \times$ Fin, Sel, \mathcal{ED} , Fin \times Fin and their isomorphic copies. In this talk, in addition to providing the basic behaviour of $P(\mathcal{J})$, we discuss the role of partitions inducing \mathcal{I} and \mathcal{J} when \mathcal{I} is a $P(\mathcal{J})$ -ideal. We give combinatorial characterizations of studied notion for some pairs of aforementioned ideals and discuss the importance of the particular relation $\mathcal{I} \subseteq^{\uparrow} \mathcal{J}$, i.e. the condition $(\exists E \in \mathcal{I}^*) \mathcal{I} \upharpoonright E \subseteq \mathcal{J}$ in characterizing $P(\mathcal{J})$, e.g.

Theorem. Let \mathcal{A} be an infinite partition of $\omega \times \omega$ into infinite sets. The following statements are equivalent.

- (1) $\mathcal{S}el \subseteq^{\uparrow} (\emptyset \times \operatorname{Fin})(\mathcal{A}).$
- (2) Sel is a $P((\emptyset \times Fin)(\mathcal{A}))$.
- (3) There is $k \in \omega$ such that there is no m-tower of monochromatic functions¹ (w.r.t. \mathcal{A}) for every m > k.
- (4) $(\forall \mathcal{E} \in [{}^{\omega}\omega]^{\omega})(\exists E \in [{}^{\omega}\omega]^{<\omega})(\forall f \in \mathcal{E})(\forall A \in \mathcal{A}) |(f \cap A) \setminus \bigcup E| < \omega.$

In the case of ideals \mathcal{I}, \mathcal{J} such that

$$\mathcal{I}$$
 is a $\mathrm{P}(\mathcal{J}) \equiv \mathcal{I} \subseteq^{\uparrow} \mathcal{J},$

the $P(\mathcal{J})$ property does not distinguish countable and uncountable families in some sense.

References

- Filipów R. and Staniszewski M., On ideal equal convergence, Cent. Eur. J. Math. 12 (2014), 896–910.
- [2] Mačaj M. and Sleziak M., *I^K-convergence*, Real Anal. Exch. **36** (2010), 177–194.

Acknowledgement

The support of the internal faculty grant No. VVGS-PF-2021-1785 is kindly announced. This work was supported by the Slovak Research and Development Agency under the Contract no. APVV-20-0045.

 $- g_i \cap g_j = \emptyset \text{ for } i, j < k, \ i \neq j.$

¹Set of partial functions g_0, \ldots, g_{k-1} is called a *k*-tower of monochromatic functions (with respect to \mathcal{A}), if

⁻ there are $A_0, \ldots, A_{k-1} \in \mathcal{A}$ such that $g_j \subseteq A_j$ for j < k,

⁻ there is $a \in [\omega]^{\omega}$ such that $\operatorname{dom}(g_j) = a$ for each j < k,