Partitions and P-like ideals

Adam Marton Jaroslav Šupina

Given two ideals \mathcal{I}, \mathcal{J} on the same set M we say that \mathcal{I} is a $\mathrm{P}(\mathcal{J})$-ideal if for any countable family $\left\{I_{n}: n \in \omega\right\} \subseteq \mathcal{I}$ there is $I \in \mathcal{I}$ such that $I_{n} \subseteq^{\mathcal{J}} I$ for each $n \in \omega$. The property was introduced by M. Mačaj and M. Sleziak [2], and further investigated by R. Filipów and M. Staniszewski [1] as a part of their research on various types of ideal-based convergence in topological spaces.

We consider some important ideals induced by disjoint families, namely Fin, Fin $\times \emptyset, \emptyset \times$ Fin, $\mathcal{S e l}, \mathcal{E} \mathcal{D}$, Fin \times Fin and their isomorphic copies. In this talk, in addition to providing the basic behaviour of $\mathrm{P}(\mathcal{J})$, we discuss the role of partitions inducing \mathcal{I} and \mathcal{J} when \mathcal{I} is a $\mathrm{P}(\mathcal{J})$-ideal. We give combinatorial characterizations of studied notion for some pairs of aforementioned ideals and discuss the importance of the particular relation $\mathcal{I} \subseteq \upharpoonright \mathcal{J}$, i.e. the condition $\left(\exists E \in \mathcal{I}^{*}\right) \mathcal{I} \upharpoonright E \subseteq \mathcal{J}$ in characterizing $\mathrm{P}(\mathcal{J})$, e.g.

Theorem. Let \mathcal{A} be an infinite partition of $\omega \times \omega$ into infinite sets. The following statements are equivalent.
(1) $\mathcal{S e l} \subseteq^{\uparrow}(\emptyset \times \operatorname{Fin})(\mathcal{A})$.
(2) Sel is a $\mathrm{P}((\emptyset \times \operatorname{Fin})(\mathcal{A}))$.
(3) There is $k \in \omega$ such that there is no m-tower of monochromatic functions ${ }^{1}$ (w.r.t. \mathcal{A}) for every $m>k$.
(4) $\left(\forall \mathcal{E} \in\left[{ }^{\omega} \omega\right]^{\omega}\right)\left(\exists E \in\left[{ }^{\omega} \omega\right]^{<\omega}\right)(\forall f \in \mathcal{E})(\forall A \in \mathcal{A})|(f \cap A) \backslash \bigcup E|<\omega$.

In the case of ideals \mathcal{I}, \mathcal{J} such that

$$
\mathcal{I} \text { is a } \mathrm{P}(\mathcal{J}) \equiv \mathcal{I} \subseteq^{\curlyvee} \mathcal{J}
$$

the $\mathrm{P}(\mathcal{J})$ property does not distinguish countable and uncountable families in some sense.

References

[1] Filipów R. and Staniszewski M., On ideal equal convergence, Cent. Eur. J. Math. 12 (2014), 896-910.
[2] Mačaj M. and Sleziak M., $\mathcal{I}^{\mathcal{K}}$-convergence, Real Anal. Exch. 36 (2010), 177-194.

Acknowledgement
The support of the internal faculty grant No. VVGS-PF-2021-1785 is kindly announced. This work was supported by the Slovak Research and Development Agency under the Contract no. APVV-20-0045.

[^0]
[^0]: ${ }^{1}$ Set of partial functions g_{0}, \ldots, g_{k-1} is called a \boldsymbol{k}-tower of monochromatic functions (with respect to A), if

 - there are $A_{0}, \ldots, A_{k-1} \in \mathcal{A}$ such that $g_{j} \subseteq A_{j}$ for $j<k$,
 - there is $a \in[\omega]^{\omega}$ such that $\operatorname{dom}\left(g_{j}\right)=a$ for each $j<k$,
 $-g_{i} \cap g_{j}=\emptyset$ for $i, j<k, i \neq j$.

